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Abstract
By consideration of the Koopmans theorem expression for the work function of
a metal, we find that the total height of the surface barrier potential equals the
value of the bulk-plasmon energy of pure metals. As a consequence a simple
formula for the work function is obtained which shows better agreement with
the experimental data than the most complete existent theories.

The work function of metals is defined as the minimum energy needed to remove one electron
out of the metal. This definition has been formally implemented in several ways [1–4], the most
usual one being the expression considered by Lang and Kohn (LK) [1, 2] in their study of metal
surfaces. It is given by

� = �φ − μ (1)

with �φ the rise in mean electrostatic potential across the surface and

μ = EF + μxc(n) (2)

the relative bulk chemical potential of the electrons in the metal, with EF the Fermi energy
and μxc(n) the exchange and correlation part of the chemical potential for an infinite uniform
electron gas of constant density n within the local-density approximation. Since a closed
expression for � has not been obtained yet its evaluation for metals has to be performed
numerically [2–6].

Equation (1), also called the Koopmans theorem expression for the work function of
metals [3, 4], considers �φ and μ as basic variables. It is also possible to rewrite it in terms of
an alternative pair of variables which, as we shall see later, are better suited for the purposes of
evaluating and interpreting �. Indeed, from equations (1) and (2) it is straightforward to write

� = Uxc − EF (3)
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where the new variable Uxc, defined as

Uxc ≡ �φ − μxc = �φ + |μxc|, (4a)

represents the total height of the surface barrier potential [4, 7]:

Uxc = veff(∞) − veff(−∞). (4b)

By consideration of the original results reported by Lang and Kohn [2] for the quantities
EF, μxc, μ and �φ, and for the metallic range 2 � rs � 6 of the Wigner–Seitz radius, we note
that

(i) μxc is negative in the whole range of rs under consideration so that the summation
in equation (2) turns into a subtraction which is responsible for the strong internal
cancellations of μ and for its change of sign. In fact, for rs = 2.5 the magnitude of μ

is only a few per cent of both EF and μxc(n).
(ii) �φ suffers very strong variations within the metallic range in such a way that the relative

importance of �φ and μ changes drastically as rs varies. For instance, for rs = 2.5, �φ is
more than 30 times larger than |μ|, while for rs = 6.0 the value of �φ is only 1.7% that
of |μ|.

(iii) It is obvious from equation (4a) that Uxc will not suffer internal cancellations, with its
range of variation (a factor of 5) being much smaller than that of �φ (a factor of 170).
Furthermore, application of the results of Lang and Kohn in equation (4a) yields U LK

xc
whose values are always larger than EF and with a slower decay as function of rs, although
EF never gets negligible as compared to U LK

xc .

Therefore, within the context of the density-functional calculations [1, 2], we conclude
that Uxc and EF present a much more desirable behaviour than �φ and μ as basic variables
to describe and to evaluate the work function of metals. Furthermore, in this work we obtain
the following fundamental result: for pure metals the value of Uxc equals the value of the
corresponding bulk-plasmon energy. As an immediate consequence a very simple and closed
formula for the work function of metals is obtained, as a function only of the Wigner–Seitz
radius rs, which yields to an agreement with the experimental data for simple metals (and
also for more complex ones) which is better than that obtained with any of the most recent
approaches [4–6].

We proceed noting first that, in terms of rs, the Fermi energy is given by the simple
power-law expression [8] EF = 50.1r−2

s (eV). On the other hand, as already mentioned, U LK
xc

has a slower decay than EF, it being a simple matter to verify that it decays more quickly
than the exchange potential μx which is well known [2] to have a r−1

s behaviour. From this
fact one wonders if U LK

xc can be described within a reasonable approximation by a simple
relation of the form Ar−p

s , with A and p constants and with 1 < p < 2. A useful hint in
seeking an answer to this question comes from an earlier work by Gutierrez [9], who found
that the ionization potential for the last bound s state of hydrogen-like ions, immersed in a
finite temperature electron gas and described by an exponentially screened Coulomb (‘Debye–
Huckel’) potential [10], is close to the bulk-plasmon energy Epl = �ωp (with ωp = √

4πn
in au) of the electron gas. Such a strong relationship between the last bound s state of screened
potentials and the plasma oscillations comes as a result of an approximate matching between
the minimum plasmon wavelength and the size of the last bound orbit which is valid at all
densities.

It is straightforward to show that a similar result applies for an ion of charge Z
immersed in the degenerate electron gas of metals by consideration of a short-range screened
Coulomb potential [11, 12] with the screening length equal to the minimum bulk-plasmon
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wavelength [12, 13]4. In this case the ratio R of the bulk-plasmon energy to the binding energy
of the last bound s state of the screened Coulomb potential is approximately given by5 (with
EF in eV)

R ≈ 1.83

√
EF

Z 2(Z + 1)
(5)

which depends on density as n
1
3 (or equivalently as r−1

s ). As an illustration let us consider
the core-ions of three metals: Na, Mg and Al with [8] Z = 1, 2 and 3 and EF = 3.24 eV,
7.08 eV and 11.7 eV, respectively. Therefore from equation (5) one gets for R the values
2.33, 1.41 and 1.04 respectively, which we take as a signature of a strong connection between
the collective fields and the last bound level of each ion-core. Indeed, taking the minimum
plasmon wavelength [12, 13] as the screening length for the short-range screened Coulomb
potential of the core-ions under consideration yields [10] in each case a value of n = 2 for the
last allowed hydrogen-like bound state, which happens to coincide with the last bound shell for
the core-ions of the three metals.

The above ideas can be qualitatively extended to pure metals if one considers the
conduction band as the ‘last bound shell’ of the metal with its bottom playing the role of the
‘s state’ since it corresponds to the lowest energy level within the band. Thus, in this case
one should compare the height of the surface barrier potential Uxc, given by equation (4a),
with the bulk-plasmon energy of each metal. In fact for the metals Na, Mg and Al the
sum EF + � gives [8] (in eV) 5.94, 10.72 and 15.95, which compares pretty well with the
corresponding bulk-plasmon energy values 6.04, 10.89, and 15.78 respectively (with a relative
error below 1.6%). More importantly, the bulk-plasmon energy can be rewritten in terms of rs

as Epl = 47.1r−3/2
s , showing an rs dependence which is consistent with the above-mentioned

possible behaviour of Uxc.
The previous discussion points to a strong connection between Uxc and the energy of bulk

plasmons. Therefore in figure 1 we compare the behaviour of U LK
xc , Epl and EF as functions

of rs. Although for high densities (small rs) the values of U LK
xc stay close to the Epl curve,

this approximate agreement is lost at low densities (larger values of rs), so we cannot interpret
directly U LK

xc as the energy of bulk plasmons for the metal. However, we should note that U LK
xc

corresponds only to an approximation (LDA) to the correct behaviour of Uxc (as a function of
rs). On the other hand, we note from equation (3) that, since for the electron gas EF is a well-
defined function of rs, measurement of � should give us direct information about Uxc through
the relation

U Exp
xc = �Exp + EF. (6)

Therefore in figure 2 we compare the bulk-plasmon energy Epl with the total height of the
surface barrier potential U Exp

xc which has been evaluated with the experimental data for the
work function �Exp of 21 metals obtained from [14–16]. Those values in filled squares (labelled
Exp.1) correspond to simple metals (five s metals Li, Na, K, Rb, Cs, plus four p metals Al, Ga,
In, Tl), while empty squares (Exp.2) correspond to another twelve elements (the s2 metals Be,
Mg, Ca, Sr, Ba; the d10s2 metals Zn, Cd, Hg; the s2p2 metals Sn, Pb, and the s2p3 metals Sb
and Bi). We note that in the literature [8, 15] we have found three different experimental values
for the work function of Be (rs = 1.87). In figure 2 we have included the corresponding U Exp

xc

4 The minimum bulk-plasmon wavelength is taken as the inverse of the maximum plasmon wavevector kc allowed by
Bohm–Pines theory of [12, 13]. The value of kc is chosen as the one that minimizes the ground-state energy of the
system.
5 The average energy per particle 3kBT/2 for the electrons in the finite-temperature plasma must be replaced by the
average energy per particle 3EF/5 of the degenerate electron gas.
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Figure 1. Energies (eV) as functions of the Wigner–Seitz radius rs (au). ×: ULK
xc ; full line: the

bulk-plasmon energy Epl; dashed line: the Fermi energy EF.
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Figure 2. Energies (eV) as functions of the Wigner–Seitz radius rs (au). : UExp.1
xc corresponding

to the nine polycrystalline simple metals of columns 1 and 13 of the periodic table (Al, Ga, In, Tl,
Li, Na, K, Rb, Cs for increasing rs values); �: UExp.2

xc corresponding to 12 polycrystalline more
complex metals of columns 2, 12, 14 and 15 of the periodic table (Be, Sb, Sn, Bi, Pb, Zn, Cd, Hg,
Mg, Ca, Sr, Ba for increasing rs values); full line: the bulk-plasmon energy Epl.

value which is farthest from the Epl curve, the other two values being closer to it. The overall

agreement between the U Exp
xc values and the bulk-plasmon energy curve (Epl) is astonishing.

Indeed, we obtain 3% for the average relative error between the Epl curve and the 21 values

of U Exp
xc reported in figure 2. Therefore, we conclude that, for the range of metallic densities
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1.87 � rs � 6,

Uxc = �ωp = 47.1

r 3/2
s

(eV), (7)

so for pure metals the total height of the surface barrier potential is completely defined by
the energy of the corresponding bulk plasmons. This statement comes as an experimental fact
which is independent of the way it has been obtained. We believe that it might have strong
consequences for the whole area of metal surface physics.

Perhaps equation (7) should not be too unexpected since it is already known [7] that the
total height of the surface barrier potential is mostly a bulk property, this being the reason
why it is not too much affected by the local-density approximation in the surface region. Two
related comments follow. (i) Within the Bohm–Pines collective description of electrons in
metals [11, 12]—modelled as a sea of weakly interacting screened electrons plus a set of
bulk plasmons which account for the long-range part of the Coulomb interaction—Pines [13]
obtained a correlation energy in reasonable agreement with the classical result of Wigner but
with the exchange energy greatly reduced by the long-range correlations. In this scheme if
one takes an electron from the bottom of the conduction band of the metal out to infinity
the screening of the electron fields should render the single-particle response of the metal
negligible as compared to its bulk-plasmon response. (ii) In calculations of transition rates
for ion neutralization at metal surfaces [17] it has been found that when an external ion, at
intermediate or large distances from the metal, captures an electron from the metallic surface
the solid is more willing to accept the surplus energy (given up by the captured electron in going
from the conduction band of the solid to the low-lying atomic level of the external ion) through
a collective response than through a single-particle response, something which is confirmed
by dielectric response calculations [18], in which it is found that for intermediate and large
distances it is the collective response of the metal which determines the neutralization rate of
the ions. Although surface plasmons are considered in [17, 18], an equivalent analysis for an
electron removed from the interior of the metal would give rise to bulk plasmons. Incidentally,
it has been mentioned [19], in connection with the Thomas–Fermi–von Weizsacker approach
for the metallic surface, that the relevant equations are most easily solved if one uses the
variable [n(x)]1/2 instead of n(x) since the system becomes somehow less unstable. Perhaps
this situation is another sign of a plasmon-like ordering of the electron gas.

An immediate consequence of equation (7) is to yield a simple closed expression for the
work function of metals as

�GDJ = Uxc − EF

=
(

47.1

r 3/2
s

− 50.1

r 2
s

)
(eV). (8)

In figure 3(a) the work function �GDJ is compared with both the corresponding theoretical
curve of Lang and Kohn [2] and the experimental data for the same set of metals considered by
them. The experimental values for these metals have been updated with the information given
in [14–16]. It is clear that �GDJ is in better agreement with the experimental values than the LK
curve. In particular for Al, (a typical ‘electron gas metal’), equation (8) yields a workfunction of
4.13 eV, which compares pretty well with the experimental value of 4.28 eV but clearly differs
from the LK result (3.87 eV). More than that, �GDJ is able to follow the general structure shown
by the experimental data: changes of slope with a maximum at rs = 2.01 corresponding to an
electron density slightly greater than that of Al (rs = 2.07). This structure is completely absent
in the curve of Lang and Kohn which is practically a straight line with negative slope within
the metallic range.
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Figure 3. Work functions (eV) as functions of the Wigner–Seitz radius rs (au). (a) Dashed line:
the Lang and Kohn result [2]; �: the more recent experimental results for the nine polycrystalline
metals considered by Lang and Kohn (Al, Pb, Zn, Mg, Li, Na, K, Rb, Cs for increasing rs values);
full line: �GDJ. (b) •: experimental data for the same nine simple elements already considered in
figure 2; ◦: experimental results for the 12 more complex metals already considered in figure 2.
Dashed line: the Lang and Kohn result [2]; dotted line: the Perdew et al result [4] (jellium); dot–
dashed line: the Perdew et al result [4] (pseudopotential); dotted–double dashed line: the Shore and
Rose result [5]; +: the Skriver and Rosengaard result [6]; full line: �GDJ.

In figure 3(b), �GDJ is compared with the most relevant theoretical results, besides those
of Lang and Kohn, that we have found so far in the literature. They correspond to the results
of Perdew, Tran and Smith [4] for both the jellium model (PTS-jell) and the flat surface
structureless pseudopotential model (PTS-flat) (which they indicate has an estimated numerical
error of 0.02 eV for rs � 1), the results of Shore and Rose [5] for their ideal metal model (SR-
ideal), and the results of Skriver and Rosengaard [6] for their ab initio calculations (SR-ab).
Finally, in figure 3(b) we also include the experimental work functions for the same metals
already considered in figure 2. Filled circles correspond to the work function of Li, Na, K,
Rb, Cs, Al, Ga, In and Tl, while with empty circles we represent the experimental results for
the other 12 metals (Be, Mg, Ca, Sr, Ba, Zn, Cd, Hg, Sn, Pb, Sb and Bi) [14–16]. For Be
(at rs = 1.87) we have included the two different values for the experimental work function
(4.10 eV, dotted circle and 4.98 eV, empty circle) obtained from [15]. In [8] they indicate a
value of 3.92 eV for the same metal which is not included here. For the simple metals (filled
circles) we see that the �GDJ curve follows the trend of the experimental data better than the
other theoretical curves. In order to have a quantitative measure of how close each theoretical
curve is to the experimental points we have computed the average relative error �̃ inherent to
each curve (or set of points as in the SR-ab case) as

�̃ ≡ 1

Nexp

Nexp∑
i=1

|�th([rs]i) − �exp([rs]i)|
�exp([rs]i)

(9)

where Nexp is the number of experimental points considered for the calculation of �̃ while
�th([rs]i) and �exp([rs]i) are respectively the theoretical and experimental values of the work
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Table 1. Average relative errors �̃ (in %) between the experimental work functions values and the
theoretical results considered in this work (see text and equation (9)).

Nexp LK PTS-jell PTS-flat SR-ideal SR-ab GDJ

9 16.1 13.7 11.0 11.4 7.6 5.8
21 15.2 15.2 12.8 11.0 9.5 8.8

function. The corresponding �̃ values calculated for the nine simple metals of figure 3(b)
and also for the whole set of experimental data (Nexp = 21) considered in this work are
reported in table 1. In both cases the average relative error related to �GDJ is the smallest
one6. Moreover, from table 1 we note that in both calculations the general situation does not
change very much among the theories, although when all the metals are considered there is
less agreement between theories and experiments, as expected. From figure 3(b) we also note
that only the PTS-flat curve contains some weak structure, although the changes of slope are
much less pronounced than those present in �GDJ, especially at high densities where it gives
too low values for the work function. On the other hand the SR-ab results stay close to the
�GDJ curve for the range rs � 2.5. For higher densities the SR-ab results are larger than both
�GDJ and the experimental ones, without showing a maximum. In that way the SR-ab average
relative errors are slightly greater than the GDJ ones (see table 1). Finally, the SR-ideal curve
overestimates the work functions of most simple metals, being very close to the experimental
data in the restricted region of densities 2 < rs < 2.5 but too high at intermediate and low
densities.

We should emphasize the fact that the empirical result of equation (8) is expected to be
valid strictly within the range 1.87 � rs � 6 which corresponds to typical metallic densities.
It might not be valid for other values of rs. In fact, from equation (8) one finds that the work
function vanishes at rs = 1.11, becoming negative for smaller rs values, which corresponds
to a completely unphysical behaviour. However, in the case of metallic hydrogen obtained
at extremely high pressures [20] the value rs = 1.58 has been considered [4], which yields
�GDJ = 3.65 eV, while from the work of Perdew and Wang [21] (exchange and correlation
included) one gets a value of 3.80 eV, which differs from our result by less than 4%. Therefore,
for large but realistic densities �GDJ might still be approximately valid. On the other hand, since
for low densities within the typical metallic range �GDJ represents the experimental data much
better than the other theories and since all the curves in figure 3(b) show a smooth behaviour,
we might expect that this situation will be maintained for very low densities. In particular, for
rs = 12 our formula yields �GDJ = 0.79 eV, while Perdew and Wang [21] obtained 1.34 eV.
In conclusion, a very simple and closed expression for the work function of metals has been
given, in terms of two fundamental quantities namely the bulk-plasmon energy and the Fermi
energy, which happens to yield results which agree with the experimental data better than those
obtained with any other existent theory.

Acknowledgments

The collaboration between the ‘Sources X, Plasmas and Ions’ Group at CELIA (Bordeaux,
France) and the Atomic Collision Group at the Universidad de Concepción, Chile, has been
partially supported by the programs Ecos/Conicyt, Grant C03E01 and also by the project
FONDECYT-1061003.

6 We obtain the same conclusion by computing the standard deviation instead of the average relative error.

7



J. Phys.: Condens. Matter 19 (2007) 326221 F A Gutierrez et al

References

[1] Lang N D and Kohn W 1970 Phys. Rev. B 1 4555
[2] Lang N D and Kohn W 1971 Phys. Rev. B 3 1215

See also Lang N D 1969 Solid State Commun. 7 1047
[3] Monnier R, Perdew J P, Langreth D C and Wilkins J W 1978 Phys. Rev. B 18 656
[4] Perdew J P, Tran H Q and Smith E D 1990 Phys. Rev. B 42 11627 and references therein
[5] Shore H B and Rose J H 1991 Phys. Rev. Lett. 66 2519
[6] Skriver H L and Rosengaard N M 1992 Phys. Rev. B 46 7157

Skriver H L and Rosengaard N M 1992 Phys. Rev. B 45 9410
[7] Liebsch A 1997 Electronic Excitations at Metal Surfaces (New York: Plenum)
[8] Ashcroft N W and Mermin N D 1976 Solid State Physics (Philadelphia, PA: Saunders)
[9] Gutierrez F A 1990 Phys. Rev. A 42 2451

[10] Rogers F J, Graboske H C and Harwood D J 1970 Phys. Rev. A 1 1577
[11] Pines D and Bohm D 1952 Phys. Rev. 85 338
[12] Bohm D and Pines D 1953 Phys. Rev. 92 609
[13] Pines D 1953 Phys. Rev. 92 626
[14] Lide D R 2003 Handbook of Chemistry and Physics 84th edn (New York: CRC Press)
[15] Holzl J and Shulte F K 1979 Work Functions of Metals, in Solid Surface Physics ed G Hohler (Berlin: Springer)
[16] Michaelson H B 1977 J. Appl. Phys. 48 4729
[17] Gutierrez F A and Jouin H 2003 Phys. Rev. A 68 12903
[18] Lorente N and Monreal R 1997 Surf. Sci. 370 324
[19] Utreras-Dı́az C A 1987 Phys. Rev. B 36 1785
[20] Loubeyre P, LeToullec R, Hausermann D, Hanfland M, Hemley R J, Mao H K and Finger L W 1996 Nature

383 702
Weir S T, Mitchell A C and Nellis W J 1996 Phys. Rev. Lett. 76 1860
Narayana C, Luo H, Orloff J and Ruoff A L 1998 Nature 393 46

[21] Perdew J P and Wang Y 1988 Phys. Rev. B 38 12228

8

http://dx.doi.org/10.1103/PhysRevB.1.4555
http://dx.doi.org/10.1103/PhysRevB.3.1215
http://dx.doi.org/10.1016/0038-1098(69)90467-0
http://dx.doi.org/10.1103/PhysRevB.18.656
http://dx.doi.org/10.1103/PhysRevB.42.11627
http://dx.doi.org/10.1103/PhysRevLett.66.2519
http://dx.doi.org/10.1103/PhysRevB.46.7157
http://dx.doi.org/10.1103/PhysRevB.45.9410
http://dx.doi.org/10.1103/PhysRevA.42.2451
http://dx.doi.org/10.1103/PhysRevA.1.1577
http://dx.doi.org/10.1103/PhysRev.85.338
http://dx.doi.org/10.1103/PhysRev.92.609
http://dx.doi.org/10.1103/PhysRev.92.626
http://dx.doi.org/10.1063/1.323539
http://dx.doi.org/10.1103/PhysRevA.68.012903
http://dx.doi.org/10.1016/S0039-6028(96)00964-8
http://dx.doi.org/10.1103/PhysRevB.36.1785
http://dx.doi.org/10.1038/383702a0
http://dx.doi.org/10.1103/PhysRevLett.76.1860
http://dx.doi.org/10.1038/29949
http://dx.doi.org/10.1103/PhysRevB.38.12228

	Acknowledgments
	References

